Iy

= = Farming Carbon:

How Plant Roots, Microbial Ecophysiology,
and Soil Minerals Shape the Fate and
Persistence of Soil Carbon

Jennifer Pett-Ridge

Lawrence Livermore National Lab/
University of California Merced

Anne' Kakouridis Noah Sokol Kate Zhalnina Nameer Baker Erin Nuccio Eric Slessarev Kat Georgiou Craig See Yoni Sher



The world’s agricultural
soils have lost at least
487 gigatons of CO,
(equivalent)

' SOC loss (Mg C/ha™Y)
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(Can we put it back?)
In the USA, Paustian et al. estimate 0.5 - 1 Gt/yr could be sequestered (an overestimate?)

Thorny issues: MRV, durability, land tenure, producer economics, shallow/deep effects, additionality

Sanderman et al. PNAS 2017



Thorny Issues: Additionality, Amendments, Unintended effect

Amendments

(A) Avoided emissions (B) Removal (C) Removal +
avoided emissions
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il C tends to increase at the

surface, but can decrease at depth

* N,O, CH, emission can increase

D



National analysis: Soil C solutions scorecard
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CARBON NEGATIVE BY 2030

0, s oplions for an early <ocporate buyer

Removal Measurability| Removal vs. Risk of
Class Subclass of carbon avoided unaccounted | Additionality Leakage risk Durability
storage emissions |GHG emissions
Cover Cropping Xk 3k %k 3k %k %k 3k 3k k %k %k %k %k
Deep-rooted perennials ok ok ok ok * ok
Soil Tillage reduction & S g & g g
Organic amendments * ok * * * ok
Grazing management * ok * ok ok ok
Cover crop rate > 5%
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na = not applicable

Schmidt et al., Carbon Negative by 2030: CO, removal options for an early corporate buyer, 2022
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Atmospheric CO,

Sequestration

Edit plants for optimized

4+ photosynthesis
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Plant Carbon Flow

Edit plants to promote carbon
flow underground, targeting root
architecture and exudates
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Soil Carbon Retention

Promote plant/microbe, microbe/microbe,
soil/microbe interactions that stabilize
carbon in the soil

Sequestered Carbon




~50% of soil organic carbon is formed from
dead soil microorganisms: ‘microbial necromass’
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pu-tre-fac-tion (aka ‘decomposition)
Vil coZ ‘\\II) VEGETABLE MOULD,

Much of soil car!.n starts as dead md“t carbon
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Darwin, 1881
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Root EPS promotes soil aggregation (Sher, ir et al. 2020)
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Microbial traits important for soil carbon accrual

Traits Prediction and validation®
Life history = Minimum generation time Codon usage, rRNA copy number, microscopy, optical density
traits Optimum growth temperature  Amino acid frequencies, microscopy, optical density
Biophysical Genome Assembled genome length, DNA yield percell, GC content
Cell size and shape Genome size to cell size, SEM, light microscopy, FACS (isolates
or Nycodenz)
Adhesion and motility Adhesins, holdfast genes; Pilli, flagella genes, microscopy,
capillary assays
Cellular Cell wall orenvelope Polysaccharide, lipid, glycoprotein, pigment or Gram-type genes,
composition composition lipidomics, FTIR, NMR, HPLC, mass spectrometry
EPS or otherresidues EPSac genes, bulk EPS quantification, FTIR, mass spectrometry
Resource Exoenzymes Secreted enzyme genes, activity essays, protein-5IP
acquisition
Transport systems Transporter genes
Secretion systems Secretion genes, SEM or TEM
Metallophores NRPS siderophore genes, siderophore assays, mass spectrometry
Storage materials Phosphoester, phospholipid, polyhydroxybutarate, microscopy, FTIR
Stress Stress regulation Regulatory genes (sigma factors, anti-sigmas, two-component)
tolerance . . . ’ ’
Spore formation Sporulation genes, spore stains, bulk quantification,
DNA-SIP-dormancy
Osmotolerance Osmotic response genes (osmolytes, efflux pumps), viral integrity
experiments, mass spectrometry, protein-5IP
Antagonism  Antibiotics, toxin—antitoxin Biosynthetic clusters, toxin or antitoxin genes, mass spectrometry
or defence  systems
Emergent Realized growth rate Genome inferred (iREP*), heavy water DNA-SIP*
traits CUE Genome predicted ranges, quantitative 5IP*", isotope tracing, bulk CUE
Stoichiometric range Genome predictions and allometric scaling, nanoSIMS, bulk Sokol et al. 2022 Nature Reviews Microbiology

measurements



Its essential we study the ‘right’ microorganismes...
Quantitative stable isotope tracing helps ID the ACTIVE taxa
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* Focus on obligate biotrophs

* By managing plant exudates, we manage the root
microbiome
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Ecosystem services

10 carbon sequestration

‘oroenhouse gas emissions

1k Biodiversity

Biomass for energy needs

Bioproducts

Phytoremediation

‘Nltnto leaching and runoff

Water use efficiency

Microbiome services
to the plant

Plant nutrient acquisistion:

- Nitrogen fixation

- Phosphate solubilization

- Production of siderophores

- Enhanced mobilization of
nutrients from soil minerals

- Mineralization of organic
matter

Defense against pathogens:
- Production of antimicrobials
- Competition for nutrients
- Predation on plant pathogens
- Interference with quorum
sensing affecting virulence
- Induced systemic resistance

Drought and salinity stress:
- Production of ACC deaminase
- Secretion of osmolytes
- Production of plant hormones
- Release of antioxidants

Zhalnina et al. 2021 Phytobiomes



Arbuscular mycorrhizal fungi

—provide significant amount of plant N, P & water
—can ‘rescue’ rhizo-biome during water stress
~transport substantial plant-fixed C outside the root zone & ' &
—-key mechanism leading to organic matter-mineral =

: : e
Interactions |

Density in soil Global Mean

Total hyphae (cm cm3) 102,000

(100-1,255,400)

AMF only (cm cm3) 2,000

(100-15,000)

6.8

Fine roots (cm cm3)*

See et al. Global Change Biology 2022
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AMF transported C becomes rapldly mmeral-assomated

SEM

13C-enrlched AM fungal hyphae
covered with kaolinite minerals
Neurath et al. 2021 ES&T

Hyphae medlate aggregate
formation
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Occluded fraction

2.2 mg 13C

In 6 weeks of plant growth, AMF hyphae moved

13C-enrlched decaylng fungal necromass

See et al. 2021 Global Change Biology BC-hyphosphere MAGs
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N .

Light fraction %EE
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Kakouridis et al., in prep
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Carbon moved by AMF hyphae
is preferentially accumulated
in predatory bacteria



Panicum virgatum




Shallow-Rooted vs. Deep-Rooted
Annuals ( )

Perennials
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Sher et al. Soil Bio & Biochem, 2020
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GHG fluxes with conversion to a deep rooted perennial

Co, CH,
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 GHG fluxes for 1.5 yrs after conversion to e Correlated with shift in
switchgrass, two soil types, compared to fallow microbiome composition
* Minor CO, effect, no N,0O effect (not fertilized) « Need SIP approach to
* Significant reduction in CH, consumption in both determine which specific
soil types taxa are responding

Bates et al. ISME Journal, 2021
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Ability to add deep C depends on soil type and initial C stocks

* Switchgrass vs. shallow-rooted annuals
e 2.5m cores x 9 depths (470 samples)

@ Field site
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Less -> More Weathered Soil

Slessarev et al. in prep.
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* Accrual of new C us most apparent in
marginal soils with low initial C




| Ferrihydrites e - .| Kaolinite
(pure) st " (pure)

200 ym

Kaolinite

(incubéﬁaé;- S )

SA: ~0.03mg" "4 SA:383mig! I SA:9.75 mig?
Neurath et al. ES&T, 2021; Whitman et al. Env. Microbiology, 2018



a.Native Mineral b. Kaolinite
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The opportunities for carbon farming are not equal across US
agricultural lands
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Objective 3:
Integrate with
global change
scenarios

Objective 2:
Measure and
model reactive
minerals

Objective 1:

Develop model
linking mineral
budget and pH
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Mineralogical C capacity in practice

186 soil profiles and model-predicted
values across Europe Global synthesis of C accrual studies from 103 soil profiles
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Opportunities:

* Biotrophs/beneficial fungi transport N, P and water to the plant host,
and fungal hyphae transport C to mineral surfaces — select for
enhanced mycorrhizal symbioses

* Deep rooted plants, particularly perennials, can have a net positive
impact on SOC — engineer for deep, robust root systems

* Rhizodeposits (extracellular polysaccharides, “EPS”) play an
important role in promoting soil aggregation/carbon persistence —
engineer for EPS production

* We need to measure the geographic patterns of biophysical \ ' .,'
constraints and mineral capacity — include dynamic minerology in !
our carbon farming strategies
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